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1 INTRODUCTION 1

Figure 1: MACS edition of KURT3D (CAD model)

1 Introduction

In this document, we describe the first iteration of the Reference Control System (RCS)
implementation. Up to now the RCS basically provides for all the partners the essential
functionality that the robot KURTS3D is delivering and as it is relevant for the MACS
project. The RCS uses CORBA TAO as Middleware and implements the IDL interfaces
of the KURT3D system as introduced in [4]. The CORBA based implementation of the
interfaces at this level allows us the integration of the real KURT3D hardware as well
as its physical simulation MACSim [2] into the framework of the MACS project in an
easy-to-use way.

We start with a documentation of the robotic platform KURT3D, which is the base
for the reference control system in the MACS project. The platform’s hardware consists
of power supply, actuators, sensors, microcontrollers, and the on-board PC system. The
PC is connected via CAN bus to an Infineon C167CR microcontroller inside the platform
and to an Infineon C164 microcontroller attached to the crane. Both, the entire hardware
and the firmware for the microcontrollers is described.

In the following, we give an overview of the current implementation of the RCS. This
includes its logical organization as well as the description of the corresponding source code
in the MACS repository (for details about general setup of the MACS CVS repository see
[3]).

A simple example is also described as a demonstration of method in order to provide
all project partners with the essential information for their first usage of the RCS.

The document concludes with a brief overview of future steps that will lead to the
integration of basic behaviors of the KURT3D system, like explore and approach behaviors.
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2 Robot Hardware

This section describes the hardware of the wheeled robot KURT3D (cf. Fig. 1), which
has been chosen to be the standard platform in the MACS project. The description shall
provide an overview on all the components of the system without going in deep detail
regarding these components. It is recommended to study the manuals or data sheets of
the parts mentioned to get the entire information if necessary.

2.1 Power Supply

The supplied battery pack for the platform consists of 20 NiMH cells with a capacity of
4,500 mAh. So we get a nominal voltage of 24 V. This voltage is transformed on the
mainboard by two DC/DC converters to 12 V resp. 5 V. Therefore, the mainboard offers
three different voltages, which are used typically as follows:

e 24 V: motors, sonar sensors
e 12 V: CCD camera
e 5 V: microcontroller, tilt sensors, shaft encoders, infrared sensors

A second battery pack of the same size is used for the power supply of the 3D laser
range finder. Finally, there is a third battery pack consisting of 4 NiMH cells (nominal
voltage 4.8 V) with a capacity of 5,000 mAh. This pack is used for the power supply
of the servos, which move the laser range finder and the cameras, as well as for the
corresponding interface board between RS232 and servo control. Additionally, one has of
course also to take care of the notebook PC’s battery, without any specific requirements
regarding KURT3D.

2.2 Actuators
2.2.1 Wheel Drives

The robot has three wheels on each side, which are connected by a tooth-belt. A single
Maxon DC motor drives each side. The motor can be operated between 2 and 42 V with
a maximum power consumption of 90 W. A planetary gear with a reduction of 35:1 is
mounted at the motor, thus allowing a torque of 1 Nm. Furthermore, a shaft encoder is
mounted at the motor, which provides a periodical, digital signal and allows to measure
the number of revolutions. The encoder delivers 500 ticks per motor revolution, i.e. 17,500
ticks per wheel revolution. The output signals are directly connected to a timer of the
microcontroller, which is used as a counter in incremental interface mode in order to
distinguish between the two possible directions.

The current consumption of each motor lies between 0.3 and 1.5 A. These currents
are delivered by a motor controller board, which is plugged in a socket on the mainboard.
The motor voltage is controlled by pulse width modulation. The necessary pwm signals
are generated by the microcontroller and sent to an IC of type LMD18200, which is the
main part of the motor controller board. According to a specific logic, the IC produces the
demanded output voltage depending on the settings of its pwm, brake, and direction pins.
The actual motor current can be measured using Pin 8 of the IC, where a proportional
current (377 mA/A) is provided.
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2.2.2 Crane

The crane is not a standard component of the KURT3D system, but is a custom design
for the MACS project. It is needed to enhance the manipulation capabilities of the robot,
which is obviously essential in the context of affordances.

2.3 Sensors
2.3.1 Sonar Sensors

Some KURT3D systems use sonar sensors of the type Baumer-Electric UNDK 30U6103 as
distance sensors. These sensors provide a voltage that is proportional to the distance of the
obstacle, which reflects the echo. The dihedral angle is 10° and the usable measurement
range is 10 - 70 cm. The output voltage is connected to a potential divider that reduces
the voltage to an appropriate value for an analog/digital converter (ADC) pin of the
microcontroller.

2.3.2 Infrared Sensors

Most KURT3D systems have Sharp GP2D12 infrared sensors around their body to detect
obstacles before they are touched. They provide a voltage that is in inverse proportion
to the obstacle’s distance. The output voltage (0 - 2.5 V) is connected directly to an
analog/digital converter (ADC) pin of the microcontroller. The detecting distance is 10 -
80 cm.

2.3.3 3D Laser Scanner

e 2D laser scanner SICK LMS-200 including cables for KURT2 robot
e Suspension unit for the SICK laser scanner LMS-200

e Volz servo motor including safety clutch

Serial microcontroller board to control up to 8 servo motors incl. cable

SeaLINK RS 422 - USB connector or RS422 PCMCIA card to connect the scanner
to a PC/laptop

2.3.4 Pan/Tilt Camera System

e 2 Volz servos
e Webcam Logitech Quickcam Pro 400
e Suspension unit for the servos and camera

e Serial microcontroller board to control up to 8 servo motors incl. cable
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Figure 2: Connecting the TMC200

2.4 Microcontrollers

The mainboard of KURT3D has two sockets for so-called miniModules-167 by Phytec.
The first socket must always be loaded, but the second one is optional, e.g. to provide
more ADC channels. Such a miniModule-167 contains essentially an Infineon C167CR
microcontroller plus external RAM and flash memory. The C167CR has an on-chip CAN
interface, which is used to connect the two microcontrollers. Further details about the
C167CR can be found in the user’s manual available from the Infineon website.

The crane’s motors are controlled by a separate TMC200 board, which is able to control
up to 3 motors with a power of 200 W. The pin out of the connectors at the motor side
of the TMC200 is shown in Fig. 2.

The mapping of the crane’s sensors and motors with the ports of the TMC200 board
is shown in the following table:



3 ROBOT FIRMWARE 5

’ Function ‘ Type ‘ Signal ‘ Port TMC200 ‘
Encoder Motor 1 A CAPCOM pulse EC-Pin_3
Encoder Motor 1 B CAPCOM pulse EC-Pin_1
Motor 1 VCC POWER 5V - EC-Pin_2
Motor 1 GND POWER GND | - EC-Pin_4
Encoder Motor 2 A CAPCOM pulse EC-Pin_7
Encoder Motor 2 B CAPCOM pulse EC-Pin_5
Motor 2 VCC POWER 5V - EC-Pin_6
Motor 2 GND POWER GND | - EC-Pin_8
Encoder Motor 3 A CAPCOM pulse EC-Pin_11
Encoder Motor 3 B CAPCOM pulse EC-Pin_9
Motor 3 VCC POWER 5V - EC-Pin_10
Motor 3 GND POWER GND | - EC-Pin_12
Limit switch Axis 2 front | Input high/low | IOC-Pin_5
Limit switch Axis 2 back | Input high/low | IOC-Pin_7
Limit switch Axis 3 top | Input high/low | IOC-Pin_9
Magnet on/off DA / output - I0C-Pin_1
Position Axis 1 analog input frequency | IOC-Pin_13
Weight analog input frequency | IOC-Pin_15

2.5 PC

KURTS3D is controlled at the application level by an arbitrary notebook PC that is con-
nected to the on-board CAN bus, which is used for the communication between the PC
and the microcontroller(s). Since CAN is not a standard interface for PC systems, one
has to insert a PC Card or use a USB to CAN adapter. With KURT3D, CAN specific
interface cards by Softing or MicroControl are supported, but in the MACS project an
USB to CAN adapter by Systec is preferred. The notebook PC should also provide a PC
Card slot for Wireless LAN. A serial interface is needed to connect the interface board
for the servos. Finally, three USB ports (maybe an USB hub is necessary) are used to
connect the two cameras and the RS422 adaptor, which provides the Data from the Laser
scanner.

3 Robot Firmware

The firmware for the KURT3D robot is available as open source code from the site
http://www.ais.fraunhofer.de/KURT2/resources.htm .

3.1 Installation Instructions

The file k2167vvv.zip contains a complete distribution of the firmware for TAIS’s robot
platform KURT3D, where vvv indicates the version. A PC running Windows NT 4.0,
2000, or XP is required. You can either use the built-in PC system or any other PC. If
you are going to modify the firmware you may need the Keil C166 Developer’s Kit.
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The firmware distribution consists of the directory \kurt2167 . Unpack this directory
to an arbitrary location, let’s say YOURPATH\kurt2167 . You will need the files of this
directory for two different purposes:

e To actually write the firmware into KURT2’s flash memory

e (optionally) To study the source code and modify it according to your needs

To write the firmware into the flash memory, do the following;:

1.

9.
10.

Unmount the cover plate of the robot

Connect the serial ports of the C167 and of the PC

Start Windows and log on

Open a MS-DOS shell (Start — Programs — Command Prompt)
Change directory to YOURPATH\kurt2167\flash (as created above)

Set C167 to bootstrap mode by pressing both boot and reset button, then releasing
re-set button first

Execute programm ”flasht 2”7 (assuming you are using COM 2)
Choose command ”7” and load file "kurt2.h86” to flash memory
Be sure that the red LED1 is blinking with 1 Hz after Software-Reset

Perform the obvious finishing and re-mounting activities

Important Note: If you are using Windows 2000 or XP it is strongly recommended
to install the Phytec FlashTools and to use them instead of the program ”flasht” as
described above. In the directory YOUR-PATH\kurt2167\wintools\phytec you can find
this software ready for setup. Use the tools as an usual Windows application and proceed

in this way:

1.
2.

Select target hardware: MINIMODUL/MINIMODUL-167/MODE1
Press connect button

Select interface (e.g. COM2) and baud rate (e.g. 57600)

Press OK button

Set C167 to bootstrap mode by pressing both boot and reset button, then releasing
re-set button first

Select all sectors and press ”erase sectors” button

Open the file YOURPATH\kurt2167\flash\kurt2.h86 and press the download but-
ton

Press and release the C167’s reset button
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If your KURT?2 system is equipped with a second microcontroller you may write the
firmware into its flash memory in the same way, except of using the file kurt22.h86 instead
of kurt2.h86 and of course connecting the PC to the serial port of the second MC.

To modify the source code you need an installation of the Keil C166 Software Develop-
ers Kit. Then simply double-click at the project file kurt2.uv2 (resp. kurt22.uv2) within
the directory YOURPATH\kurt2167 to open the project. The modifiable code consists of:

kurt2mc.h  header file

imu.h header file for IMU related functioms
kurt2mc.c  main control loop (main MC)
kurt22mc.c main control loop (optional 2nd MC)
behavior.c default behavior without PC control
kurt2can.c CAN related functions

imu.c IMU related functions

After building a new executable you can load it to RAM using the built-in monitor.
Attention: be sure to use the correct monitor settings (e.g. COM 2 and 57600 baud).
When you have finished debugging, open a Command Prompt Window, change directory
to the corresponding subdirectory YOURPATH\kurt2167\flash and execute "make.bat”,
thus creating new files "kurt2.h86” and "kurt22.h86”.

3.2 Control Loop

A continuous loop with a frequency of 100 Hz is executed by the standard firmware. That
means, every 10 msec the following actions are achieved by the main C167 using the CAN
bus:

1. Sense motor encoder values (speed)

2. Receive a motor control command sent by the PC
3. Execute the received motor control command

4. Transmit info message

5. Convert and transmit analog sensor values

6. Transmit motor encoder values (speed)

7. Transmit bumper and remote control values

8. Update and transmit odometry related values

9. Transmit gyroscope data as estimated orientation
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10. Query and transmit compass values

11. Query and transmit tilt sensor and temperature values (only every 2 seconds)

The optional second C167 executes a loop with the same frequency, regarding the
sensors that are attached to it:

1. Transmit info message

2. Convert and transmit analog sensor values

Hence, a control program executed by the PC system may receive all appropriate
sensor values and supply motor commands according to desired behaviors without taking
care of the very low level details of microcontroller programming.

If the microcontroller eventually receives no new messages from the PC, e.g. because
of a disconnected CAN bus, a default behavior is executed (e.g. all motors are stopped
for safety reasons).

3.3 CAN Interface
There are three types of CAN messages used within the system:

1. Control messages
2. Info messages

3. Sensor messages

Control messages always have CAN Id. 1 resp. 17 and are discriminated by the first
two bytes of the data frame defining the control mode. Control messages have to be sent
by the PC system, which controls the robot. Info messages have CAN Id. 4 resp. 20. They
are continuously sent by the microcontroller and contain information regarding hardware
identification, firmware version, and the current value of the firmware’s loop count. Sensor
messages have a CAN Id. > 4 resp. 21. They are continuously sent by the microcontroller.
CAN Id.s > 15 are used by the optional second microcontroller. The complete specification
of all CAN messsages used by KURT3D can be found in the appendix A.

4 Application Software

The functions of the PC software, which controls the KURT3D robot, is documented
in its current version as a html-file, generated by doxygen. It is accessible on the page
http://www.macs-eu.org/software.html for review purposes. This documentation includes
all public functions that are implemented by the C++ classes for KURT3D. Only a subset
of these functions is used by the higher level software modules like Perception, Learning,
and Deliberation. They use the robot as a CORBA server with the API that is specified
in [4].

The same API is implemented for the simulator, which is described in [2]. The idea is
that the control software is implemented as a CORBA client, which can connect either to
a real robot or to the simulator. The next section shows how to do this.



5 INTEGRATION OF THE REFERENCE CONTROL SYSTEM 9

| RCS |

[ [ | |
[ PERCEPTION | | LEARNING | [ REPRESENTATION | [ SIMULATOR || KURT3D |

| VOCUS | PLANER | Entity Generation Module |

SCHEDULER

|Affordance Support Module|

| vocus opencv |

Figure 3: Structure of RCS in the repository

The software modules of the RCS of course reflect the affordance-based architecture
that is to be developed in the MACS project. Although there is a rapid progress in defining
the functionalities of the system, the architecture is not yet specified on a level that would
allow to start with the implementation of all modules. This will be an incremental process
and implies that the software will be changed accordingly. Fig. 3 shows the structure of
the software in the cvs repository from the current perspective.

5 Integration of the Reference Control System

5.1 Setting up CORBA Servers and Clients

All project partners have access to the implementation of the IDL. KURT3D interfaces [4]
due to the CVS repository of the MACS project [3]. If one checks out the project macs
in a certain directory, let say the home directory $HOME, the RCS implementation can be
found in the directory:

$HOME/macs/AIS/RCS/
This folder includes the following three subdirectories:

CorbaClient
CorbaServerKURT3D
CorbaServerMacsim

As the names of the subdirectories are indicating they contain the server and client appli-
cations according to the corresponding KURT3D IDL interfaces. There are two directories
for the server implementation since we have two types the KURT3D systems, namely the
simulation (MACSim) as well as a real robot system. A client application is connected
either to the real hardware or the simulation, depending which type of server is running.
TAIS and METU-KOVAN are responsible for the implementation of the two servers.
The corresponding source code should not be touched by the other partners. Client ap-
plications do not have to take into account how a server is actually implemented.
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Once the CORBA TAO environment has been successfully installed (see [4] for this
procedure), the compilation and the start of the CORBA server for the real KURT3D
platform is straight forward. After a change to the directory:

$HOME/macs/AIS/RCS/CorbaServerKURT3D

The server called serverKURT3Dall can be created by executing the command make.
But before this server can be started one has to start the CORBA name service first.
Hence, the following two commands must be executed one after one:

>
>$TAO_ROOT/orbsvcs/Naming_Service/Naming_Service
—-0RBEndPoint iiop://localhost:23456

>
>serverKURT3Dall

-ORBInitRef NameService=corbaloc:iiop:localhost:23456/NameService
>

For details about these commands please see [4].

If a server is running an arbitrary client can be started in order to receive data from
the sensors as well as to send data to the actuators of the KURT3D server, no matter if
the server is actually based on the simulation or on the real robot hardware. A possible
client application can be found in the directory:

$HOME/macs/AIS/RCS/CorbaClient

After successful compilation of the client by executing the command make in this directory,
the client can be started in the same directory by the command:

clientKURT3D
-ORBInitRef NameService=corbaloc:iiop:localhost:23456/NameService

Currently our first example of a CORBA client, which uses the KURT3D IDL interface
implementation, is basically implemented by the three files:

client.cpp
RcsClient.cpp
RcsClient.h

The file client . cpp contains the main routine. In this function an instance of the class
RcsClient is used to implement a client application. In our examples one can see that a
RcsClient has at least five public member functions. These five function are sequentially
executed:
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int main(int argc, char * argv[])
{
RcsClient client = RcsClient();

client.openConnectionToServer (argc,argv) ;
client.initComponents();

client.run();

client.stopComponents() ;
client.closeConnectionToServer () ;

The first and the last method call of the RcsClient client provide the opening and
the closing of the connection to the CORBA server.

Two additional methods can be used to bring the system in a defined state. This
becomes obviously essential at two points in our client application: after a connection is
established and before an application is actually starting (initComponents()) as well as
before the connection to the server is closed (stopComponents()).

The method run() implements the loop that provides the computation of received
data and the transmission of the data between server and client. The implementation of
this method shows that an additional function singleStep(...) is executed as long as
the return value of this function is true.

void RcsClient::run(){
bool  goln = true;

doq{

goOn = singleStep(...);
} while(goOn);
return;

3

Therefore the main functionality of the client is determined by the private member function
singleStep(...).

The best way to understand this framework is to implement a concrete example. In
the following chapter, we introduce such a concrete example in order to provide simple
templates for all colleagues, who are interested to write their own client applications.

5.2 Example for the usage of the CORBA based RCS

As a demonstration of method for the implementation of a client using the KURT3D IDL
interface, we introduce a task that drives a KURT3D pan-tilt-camera in such a way that
the focus of attention (FOA) is in the center of the current image. The FOA is computed
by the VOCUS software introduced in [1].

According to our software environment as introduced above the connection to the
CORBA server is already implemented by the two functions openConnectionToServer ()
and closeConnectionToServer (). Without any changes they can directly be used for
other client applications. Hence, we only have to describe the essential functionality of
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Figure 4: The images of a pan-tilt camera indicate view of the camera before (left) and
after (right) the orientation to the current focus of attention. The black crossing lines are
added in order to indicate the center of the image.

the private member function singleStep(...), since this is the only place which has to
be modified, beside the obvious initialization and clean-up procedures performed in the
functions initComponents() and stopComponents().

First it is important to notice that the interfaces of the KURT3D system are the argu-
ments of the function singleStep. Therefore function calls as defined in the corresponding
IDL interface specifications can be implemented by using the name of these arguments.

bool RcsClient::singleStep(Macs::IBasicControl_var basicControl,
Macs: :ICamera_var cameras,
Macs: :ILaserScanner_var laserScanner){

Macs::ICamera: :RgbImageArray *rgbImage;

// get image data
success = cameras->getRgbImage(Macs::ICamera::LEFT, rgbImage) ;

// change pan and tilt posistion
cameras->changeCameraPanTilt (Macs: : ICamera: :LEFT,
(signX*changeSteps),
e (signY*changeSteps)) ;
}

In this example one can see how an image is actually requested from the left camera
and how the pan and tilt positions are changed by the values of the second and third
arguments. Just to remember, the two functions and the data type for the image data
etc. are defined in the interfaces ICamera of the corresponding IDL file (see [4]):

module Macs

{

interface ICamera

{
enum Side {LEFT, RIGHT};
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typedef sequence<octet> RgbImageArray;

typedef long Pan;
typedef long Tilt;

boolean changeCameraPanTilt(in Side s, in Pan panOffset, in Tilt tiltOffset);

boolean getRgbImage(in Side s,out RgbImageArray data);

Coming back to our example and without going further into the details, the following
procedure drives the camera step by step in the direction of the FOA until the the FOA
is in the center of the current image:

1. set camera to default position

2. compute the current FOA (using bottom-up mode)
3. orient camera towards this FOA (top-down mode) ...
4. until the given FOA is in the center of the image

The complete source of this procedure is given in the appendix B and in Fig. 4 an example
of this application is shown.

6 Summary and Future Work

The current state of the RCS via CORBA TAO makes it possible to write one application
that is able to deal with the real KURT3D robot systems as well as its physical simulation
MACSim (Fig. 5(a)).

Up to now the implementation of both servers is still in progress. But the implemented
interfaces can already be used by the project partners. The functionality of pan-tilt camera
is ready for use and can be applied to provide partners with real sensor data independently
of other components, e.g. the crane.

The next steps towards an extension of the RCS is the definition and implementation
of IDL interfaces which enable other applications to trigger specific basic behaviors, while
sensor and actuator data can be received. Basic behaviors means that the triggered
processes let the robot run autonomously.

In order to maintain the current integration of the real robot and the simulation, the
needed basic behaviors have exclusively to use the KURT3D interfaces as specified in
[4]. As a consequence an interface for specifying the triggering of these behaviors will be
defined on a higher level (indicated in Fig. 5(b)).
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Figure 5: (a) The current state of the RCS implementation based on the KURT3D interface
specification, which integrates the real robot as well as the its physical simulation. (b)
Scheme indicating the implementation of the basic behaviors used by other application for
triggering of such behaviors.
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A Specification of KURT3D CAN messages

CAN Id. 1: The motors or other devices are controlled by a single CAN message,
depending on the selected control mode.

0x0000 RAW control mode: The two motors are controlled by three parameters: di-
rection of rotation, brake (switch motor on or off), and pulse width (similar to voltage).
Direction is controlled by one bit, where 0’ means ”forward” and "1’ means ”back”. Brake
is controlled by another bit, where ’0’ means ”brake off” (i.e. actually drive) and 1’ means
"brake on”. Pulse width for left and right motor may be set separately to a value between
0 and 1024, where the meaning of 0 is ”full power”, 256 is corresponding to a duty cycle of
75 %, 512 is corresponding to a duty cycle of 50 %, and the meaning of 1023 is ”"no power
at all”. The intermediate values are treated in an analogous manner. This definition is
in direct accordance with the operation of the C167’s pulse width modulation module as
described in chapter 15 of the C167 user’s manual.

020001 SPEED control mode: The speed for left and right motor may be set separately
to a value between -100 and 4100, where the meaning of -100 is maximum speed back, 0
means no speed at all, and the meaning of +100 is maximum speed forward. The inter-
mediate values are treated in an analogous manner. The desired speed will be maintained
by the microcontroller.

0xFF00 ACTUATOR_ON control mode: This message causes the microcontroller to
switch on an actuator, which is connected to its Pin 2.9.

0xFFO01 ACTUATOR_OFF control mode: This message causes the microcontroller to
switch off an actuator, which is connected to its Pin 2.9.

0xFF02 CALIBRATE_GYRO control mode: This message causes the microcontroller
to recalibrate the (optional) gyroscope.

0xFF03 RESET_GYRO control mode: This message causes the microcontroller to reset
the (optional) gyroscope.

0xFF04 RESET_SSC control mode: This message causes the microcontroller to reset
the SSC interface (SPI), which is used for communication with the optional gyroscope
module.

0xFF05 UPDATE_ANGLE control mode: This message updates the orientation com-
ponent of the odometry with a new angle.

0xFFFF MC_RESET control mode: This message causes a software reset of the mi-
crocontroller.

CAN 1d 4: The hardware identification represented by an unique number and the
firmware version are transmitted in 2 groups of 2 bytes. The current value of the firmware’s
loop count is transmitted in 4 bytes.

CAN 1Id 5: The current values of sonar sensors 0 - 3 (attached to channels 0 - 3 of
the C167’s analog/digital converter, resolution: 10 bit) are transmitted in 4 groups of 2
bytes.

CAN Id 6: The current values of sonar sensors 4 - 7 (attached to channels 4 - 7 of
the C167’s analog/digital converter, resolution: 10 bit) are transmitted in 4 groups of 2
bytes.

CAN Id 7: The current values of sonar sensors 8 - 9 (attached to channels 8 - 9 of the
C167’s analog/digital converter, resolution: 10 bit) are transmitted in 2 groups of 2 bytes,
followed by the values of adc channel 10 and adc channel 11 transmitted in 2 groups of 2
bytes.
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CAN Id 8: The current values of the left and right motor’s current sensors (attached
to channels 12 - 13 of the C167’s analog/digital converter, resolution: 10 bit) are trans-
mitted in 2 groups of 2 bytes, followed by 2 bytes for adc channel 14 and 2 bytes for the
current value of the optional gyroscope module’s temperature sensor.

CAN Id 9: The current values of the left and right motor’s encoders are transmitted
in 2 groups of 2 bytes, meaning number of encoder signals per 100 msec. Additionally,
the value of a counter is transmitted, which allows to prove that all encoder messages are
received. Because the en-coder values change only every 100 msec but the message is trans-
mitted every 10 msec, there will normally occur 10 messages with the same measurement
content, which can be uniquely identified by the counter values.

CAN Id 10: The current state of bumpers 0 - 5 is transmitted in a single byte,
containing ’0’ at the corresponding bit position if the bumper is pressed and ’1’ otherwise,
i.e. O0x3F means "no bumper is pressed”. The current state of the remote control’s buttons
0 - 7 is transmitted in a single byte, containing ’0’ at the corresponding bit position if the
button is pressed and ’1’ otherwise, i.e. 0xFF means "no button is pressed”.

CAN 1Id 11: The current position of the robot is transmitted in three values for
x-position, y-position and orientation. The units are mm resp. 0.1 * degree. It is assumed
that the robot starts at (0 mm, 0 mm, 0.0 degree) when the microcontroller is reset. The
position is computed by dead reckoning only.

CAN Id 12: The accumulated values of the left and the right motor’s encoders are
transmitted in 2 groups of 4 bytes.

CAN 1Id 13: The current values of the tilt sensor are transmitted in 2 groups of
2 bytes, followed by the current values of the compass sensor’s curve 1 and curve 2.
The actual direction may be computed by applying a formula of the type: dir = ((pi +
atan2(curvel, curve2)) * 180) / pi

CAN Id 14: The current values of the estimation of the robot’s angle and its standard
deviation are transmitted in 2 groups of 4 bytes. This estimation is based on the data
from the optional gyroscope module.

CAN Id 20: The hardware identification represented by an unique number and the
firmware version are transmitted in 2 groups of 2 bytes. The current value of the firmware’s
loop count is transmitted in 4 bytes.

CAN Id 21: The current values of the analog sensors 0 - 3 (attached to channels 0 - 3
of the optional second C167’s analog/digital converter, resolution: 10 bit) are transmitted
in 4 groups of 2 bytes.

CAN Id 22: The current values of the analog sensors 4 - 7 (attached to channels 4 - 7
of the optional second C167’s analog/digital converter, resolution: 10 bit) are transmitted
in 4 groups of 2 bytes.

CAN Id 23: The current values of the analog sensors 8 - 11 (attached to channels
8 - 11 of the optional second C167’s analog/digital converter, resolution: 10 bit) are
transmitted in 4 groups of 2 bytes.

CAN Id 24: The current values of the analog sensors 12 - 15 (attached to channels
12 - 15 of the optional second C167’s analog/digital converter, resolution: 10 bit) are
transmitted in 4 groups of 2 bytes.
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CAN Id. | Data Format [no. of | Description
bytes]

0

1 control_.mode[2],  set- | control command (depending on
tings|6] control mode)

2 - reserved (don’t use)

3 - reserved (don’t use)

4 hw_id[2], fw_version[2], | hardware identification, firmware
loop[4] version, loop count

5 adc_00[2], adc_01[2], | analog input channels 0 - 3 (10 bit):
adc_02[2], adc_03[2] sonar sensor 0 - 3

6 adc_04[2], adc_05[2], | analog input channels 4 - 7 (10 bit):
adc_06[2], adc_07[2] sonar sensor 4 - 7

7 adc_08[2], adc_09[2], | analog input channels 8 - 11 (10 bit):
adc_10[2], adc_11[2] sonar sensor 8 - 9, adc channel 10,

adc channel 11

8 adc_12[2], adc_13[2], | analog input channels 12 - 13 (10

adc14[2], temp|2] bit): motor current right and left,
adc chan-nel 14, board temperature

9 encoder_left[2], motor encoder left and right, mes-
encoder _right[2], sage count
enc_count[4]

10 bumpers(1], rc[1] bumper and remote control states

11 position_x[3], posi- | position as ascertained by odometry
tion_y[3], orientation[2]

12 enc-odo_left[4], accumulated values of left and right
enc_odo_right[4] motor’s encoders

13 tilt_1[2], tilt_2[2], | tilt sensor and compass (optional)
curve_1[2], curve_2[2]

14 gyro_angle[4], data from optional gyroscope mod-
gyro_sigmal4] ule

15 - reserved (don’t use)

16 - reserved (don’t use)

17 - reserved (don’t use)

18 - reserved (don’t use)

19 - reserved (don’t use)

20 hw_id[2], fw_version[2], | hardware identification, firmware
loopl[4] version, loop count

21 adc_00[2], adc_01[2], | analog input channels 0 - 3 (10 bit)
adc_02[2], adc_03[2]

22 adc_04[2], adc_05[2], | analog input channels 4 - 7 (10 bit)
adc_06[2], adc_07[2]

23 adc_08[2], adc_09[2], | analog input channels 8 - 11 (10 bit)
adc_10[2], adc_11]2]

24 adc_12[2], adc_13[2], | analog input channels 12 - 15 (10
adc_14[2], adc_15[2] bit)

17
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B Complete source of the singleStep() method

bool RcsClient::singleStep(Macs: :IBasicControl_var basicControl,
Macs::ICamera_var cameras,
Macs::ILaserScanner_var laserScanner)q{

// determine resolution:
Macs: :ICamera: :CamResolution resolution = Macs::ICamera: :VGA;
Macs::ICamera: :RgbImageArray *rgbImage?2;

int w 640; // must be consistent with resolution
int h 480; // must be consistent with resolution
std: :vector<Foa> foalist;

Foa foa_topDown;

int goalPosX = w / 2;

int goalPosY = h / 2;

int currentPosX, currentPosY;
int diffPosX, diffPosY;

int changeSteps = 3;

int signX, signYV;

int posTolerance;

int maxTrails = 30;

int currentTrail;

bool xyPoseReached;

// configure camera

char* pStr;

CORBA: :Short res = cameras->configCamera(Macs::ICamera::LEFT,
resolution, 250, 250, pStr);

cout << pStr << endl;

Macs::ICamera: :Pan panPos;

Macs::ICamera: :Tilt tiltPos;

// get image
Macs::ICamera: :RgbImageArray *rgbImage;
bool success = cameras->getRgbImage(Macs::ICamera: :LEFT, rgbImage);
if (success)
saveppm (rgbImage->get_buffer(), "test.ppm", w, h);

// compute focus of attention (Bottom-up)

Foa f;

f = vocus((const char*) (rgbImage->get_buffer()), w, h);
// printFoa(f);

int n = w x h *x 3;

unsigned char buffer[n];

for (int i=0; i<n; i++)
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buffer[i] = (*rgbImage) [i];
}
drawFoa(buffer, w, h, f);

// show image
showImage (buffer, "test.ppm", w, h);

// get current focus positions and tolerance value
currentPosX = f.x;
currentPosY = f.y;
if (f.radiusheight > f.radiuswidth)
posTolerance = f.radiusheight;
else
posTolerance = f.radiuswidth;

// control loop

currentTrail = O;

do{
// compute pan and tilt position of foa: (the parameters are estimated)
diffPosX = currentPosX - goalPosX;
diffPosY = -(currentPosY - goalPosY );

if ((abs(diffPosX) < posTolerance) && (abs(diffPosY) < posTolerance))

{
xyPoseReached = true;
b
else
{
xyPoseReached = false;

// move camera to foa
if (diffPosY < 0)

{

signY = -1;
}
else
{

signY = 1;
b
if (diffPosX < 0)
{

signX = -1;
}

else
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{
signX = 1;
}
cameras->changeCameraPanTilt (Macs: : ICamera: :LEFT,
(signX*changeSteps),
(signY*changeSteps)) ;

// get new image:
success = cameras->getRgbImage(Macs::ICamera::LEFT, rgbImage2);

// compute new focus of attention (Top-down)

topdown_search = true;

topdown_factor 1,

foalist.push_back(f);

foa_topDown = vocus((const charx*) (rgbImage2->get_buffer()), w, h, &foalis

// new positions
currentPosX = foa_topDown.x;
currentPosY = foa_topDown.y;

// delete memory of the current pic
delete rgbImage2;
}
currentTrail++;
}while((currentTrail < maxTrails) && (not(xyPoseReached)));

// get new image:
success = cameras->getRgbImage(Macs::ICamera: :LEFT, rgbImage2);

// compute focus of attention (Top-down)
topdown_search = true;
topdown_factor 1;

foaList.push_back(f);
foa_topDown = vocus((const charx*) (rgbImage2->get_buffer()), w, h, &foalist);
unsigned char buffer2[n];
for (int i=0; i<n; i++)
{
buffer2[i] = (*rgbImage2) [i];
}
drawFoa(buffer2, w, h, foa_topDown);

// show image
showImage (buffer2, "test2.ppm", w, h);
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if (xyPoseReached)
{

cout << "after "<< currentTrail << " steps object of interest " <<
"in the center of the picture.\n" << endl;

b
else
{
cout << "After "<< currentTrail << " steps, the system was not able " <<
"to focus on the object of interest.\n " << endl;
b

delete rgbImage2;
delete rgbImage;

return false;



