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1 Introduction

Currently, we are evaluating two differnet approaches to planning within the MACS archi-
tecture. The common starting point for both approaches is the (cue, behavior, outcome)
affordance representation triple as defined for the affordance repository in the MACS archi-
tecture in WP2. Based on the possible interpretations of this representation, we consider
the following two approaches:

• The first interpretes affordances as preconditions for plan operators. Hereby, groups
of learned affordance representation triples provide the means of grounding the op-
erator in terms of actually implementing the action.

• The second approach follows the idea of interpreting an affordance triple’s cue de-
scriptor as precondition of operators in a classical AI planning approach, and its
outcome descriptor as postcondition. The aim is to give as little as possible domain
information beforehand in order to allow the planner to make use of any learning
progress that the learning module of the MACS architecture will make in affordance
learning.

The first approach will be presented in chapter 2. Here, we will propose an according
PDDL domain description and demonstrate the usefulness of the approach exemplary by
using off-the-shelf planning systems.

The second approach will then be topic in chapter 3. This approach will show to be
highly dependent on the expressive power of the output generated by the learning module.
Thus, besides describing the proposed workflow, the requirements to that module will be
listed.

Chapter 4 will eventually compare the benefits and drawbacks of both approaches and
will address some of the questions that need still to be answered before we will give the
interface definition of the planning module in chapter 5.
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2 Domain description based planning

We start with adopting a fairly simple view of planning for the third year of MACS. In
this view, a plan consists of a set of operators O and a partial order ≺ on these operators;
if operators o1, o2 ∈ O are unordered by ≺, they can be executed in either order. That is
the classical basic view on plans as in AI. More expressive plan representations exist, but
they will not be considered here at the moment.1

Continuing in this classical view, an operator is described by its preconditions and
its postconditions; both are sets of propositional atoms, each of which is either negated
or unnegated. Planning domains are typically modeled by planning domain descriptions.
Amongst these, PDDL [4] is currently the most popular language to specify them and
will thus be used here as well. A healthy number of algorithms and systems exists for
generating plans for problems given by a PDDL domain description plus a specification
of initial situation and goal propositions.

Executing a plan means to execute its operators one after another according to the
plan order ≺. In order to execute an operator, which is first of all just a syntactic object
in planning, each and every operator needs to have an implementation that tells how it
should cause the robot effectors to work, and what are conditions for terminating with
success, or with failure, or with timeout.

So this is classical planning as it has always been – and where do affordances come
into play? Our view of the interplay between plans and affordances is this:

• Affordances help ground or implement operators and monitor plan execution.

• Affordances may be a precondition for some operators.

(To ground and to implement an operator will be used as synonyms here.)
So what differs from the standard view on planning if affordances can be perceived on

some elementary level, is, firstly, the execution of some of the operators. An affordance
and an operator are objects of distinct sorts in a robot control system. While an operator
is an abstract syntactic object in planning, an affordance and its according affordance
representation triples may ground an operator in the environment yielding to an executable
action.

Consider, for example, the operator ”pass(door1)”; and assume that an affordance
”passable” is present, with the cue triggered by narrow open spaces, the behavior being to
physically drive through that space, and the outcome of being located beyond the passage.
One way of implementing the ”pass(door1)” operator would be to make sure that the robot
perceives the open door1 (i.e., it is close to it, facing it), and that it lets guide itself by
the ”passable” affordance of this door1 – by no other affordance that may also be present,
and by this affordance as perceived in the area of door1, not door2.

So the point is: if it is clear how to act upon the perception of some affordance, then
executing an operator may rely on that, provided that it can be made sure that the “right”
affordance is acted upon.

1More precisely, O consists of different instances or occurrences of operators – “the same” operator,
say, “pass(door1)” of passing door1 may occur several times in a plan. To keep things simple, we will
not explicitly mention the difference between an operator class and different instances of operators of that
class.
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As stated above, affordances may, besides their role in the implementation of operators,
also be a precondition for some operators. In order to be able to lift an object it has to
be liftable. Consequently the percept of a particular affordance affords not only an action
but is also a precondition for the operator to be applicable. This is the point where
the planning module really exploits the MACS concept of affordances since it can, by
interpreting affordances as inherent preconditional properties of an operator, determine
which (in this interpretation afforded) operators to use to reach the goal. That is the
second main difference of planning with or without affordances available in robot control.

See section 2.2 for the detailed description of the work flow of the planning module.
Some operators can thus be seen to be correlated to an affordance; to the abstract

affordance and not to the instantiated affordance representation triple.
This does, however, not mean that there is a 1 : 1 mapping between operators and

affordances since there may be operators that cannot be mapped to an affordance. For
example, part of my plan for the day may be to attend some committee meeting. Now,
nothing ever affords for me to go to a committee meeting. I do it (and therefore it is part
of my day plan) as a part of my professional life the reasons for which can only be given on
some relatively abstract level. So to implement this operator in terms of actuator control,
there simply is no affordance to exploit here.

The operator affordance relation only exists between the operator and the abstract
type of the affordance. This means that the actual implementation of the operator in the
world may exploit the different perceived and available affordance representation triples of
that abstract affordance. In other words, the robot may have learned that both blue and
red test objects are liftable. It thus has two affordance representation triples connected
to the affordance liftable. In the case of the MACS project we do not distinguish test
objects by their identity but by their functionality. A valid goal would therefore be to lift
some liftable test object. But if this goal is described as just lifting something and not
a particularly specified item, the plan will contain the lift operator if the preconditional
affordance can be perceived. In this example this is the case in the presence of either red
or blue cans or both. That operator may then be grounded by the execution control to the
next best object that affords lifting, i.e. that fulfills the cues; even if it is completely new
to the robot. In this case, the different affordance representation triples can be exploited
alternatively for implementing execution of one single operator.

It is believed here, that this operator – affordance relation is meaningful exactly in
those cases when an operator can be grounded by exploiting the affordance and that these
are always operators that directly describe an action; like for instance, passing through a
door, or lifting a can but not attending a meeting or getting coffee. Coffee affords drinking
but going to the coffee machine in order to get it is just a necessary planning step before
the affordance can be exploited.

Hereby, one should always keep in mind that while an operator can obviously only
be correlated to at most one affordance, a test object can easily afford multiple things
like, for instance, lifting, stacking, and pushing. The lift operator, for example, cannot be
triggered by the affordance of stackable. Nevertheless the cues of a stackable object are
most certainly a superset of the cues found in a liftable affordance representation triple.
But while only those test objects that have a flat bottom can be stacked on top of others,
while even round test objects may show to be liftable.
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There is still another advantage that affordances offer for plan-based robot control:
they make opportunistic plan execution (in the sense of [1]) possible. Classical plans
normally keep track of the dependency (or causal link) structure among operators: The
structure of which operator is in the plan for generating which condition for which other
operator. Assume operator o is of a type that is implemented using one or many affor-
dances. Then, depending on the concrete dependency structure, it may be possible and
useful to execute o (act upon its associated affordance) before it is “its turn”, namely, in
case that a shortcut in the possible action at execution time is found that has emerged by
serendipity or that had earlier been overlooked by incompleteness of the planning domain
description. So, opportunistic plan execution may be possible, provided that affordances
related to operators later in the plan can be monitored (or attended to) during plan
execution.

The the following, section 2.1 will describe what kind of representation is used as the
basis of the planning module to work on before section 2.2 describes the functionality that
arises from this representation.

2.1 Representing the World

As aforementioned, the planning module needs knowledge about the robot’s capabilities
for action, i.e. what it can physically achieve, and about the current state of the world.
The next section will therefore introduce the proposed map representation the robot should
maintain while exploring its environment. Based on that representation, the knowledge
about the capabilities for actions will be described by specifying the planner’s actual
operators as well as the kind of the resulting domain description in section 2.1.2.

2.1.1 Map

In order to make plan execution efficient and scalable to larger environments it is manda-
tory to maintain some sort of spatial representation of the environment and the objects,
or test objects, within. While sophisticated techniques for mapping environments in mul-
tiple dimensions already exist, the simplified setup of the MACS demonstrator scenarios
does neither demand nor justify such an elaborated approach. Nevertheless, the scenario
and the resulting requirements for the functionality of the planning module are complex
enough to propose a simple map as the basis of the world representation.

The kind of map proposed here is a topological or symbolic map exemplarily depicted
in figure 1. The map depicts the two rooms of the demonstrator scenario and divides these
rooms into a total of 6 soft regions; soft with the meaning of being not sharply separated.
The regions are meant to be enriched with information about which (abstract) affordances
have previously been perceived in that region. The idea behind this representation is to
provide the robot with a most basic spatial world representation. If the robot is, for
example, located in region 2 of the left room and has as its goal to drive to the right room,
the resulting course of action will first make it drive to the door-region of the left room. It
will drive there as it knows that to get from one room to another it has to pass through a
door. And since it has previously perceived the affordance of something ”passable” within
or close to the door-region of the left room, it is most reasonable to drive there. When
it reaches the region and perceives the affordance, the operator ”drive-through” will be
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region1_left switchRegion

region2_left doorRegionLeft doorRegionRight

region1_right

Left Room Right Room

Figure 1: Topological Map - Regions are not sharply separated.

implemented in terms of an action or behavior that steers the robot through the opening,
resulting in the desired goal state.

In terms of the MACS project, the map can, and maybe should, easily be predefined
yielding the only requirement for the robot to localize itself coarsely to be in a particular
region of a particular room. Beyond that, the robot only has to tag the map regions
with the abstract affordance types it has perceived within those regions; with the abstract
affordances and not with the specific triple.

At this point, the example of opportunistic planning can shortly be picked up again,
as it immediately becomes clear if the robot has as to fulfill the task of lifting something.
Assume that the plan sequence requests from the robot to drive to the other room in
order to get to the region where it has perceived the affordance liftable. If the robot starts
driving there it can on the way configure its event and execution monitor [2] in a way to
be notified when the cues of the various liftable affordance representation triples are being
perceived. This might for instance be the case when a new liftable object is placed in the
arena by an operator while the robot is moving. The robot then perceives the according
affordance before it reaches the target area and thus can abort the current action in order
to implement the lift operator. It is actually beliefed that this behavior will be observable
in the majority of cases since the robot will presumably perceive the test objects located
in the target region, and thus the affordances connected to those objects, before it actually
reaches the region.

The suggested map representation is of course only the underlying spatial representa-
tion derived from perception and learning that forms the basis for the planning module.
Furthermore, it is needed to describe the knowledge encoded in that map as well as the
knowledge about the applicable operators in a domain description which shall now be
introduced.
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2.1.2 Domain Description

A domain description forms the formal basis for a planning system. The domain normally
contains sets of operators (see above) and furthermore predicates which can be evaluated
to be either true or false. This is called a domain definition. A goal and the system’s
actual state is normally specified in a problem definition (see section 2.2). Since the
current standard of specifying domain descriptions is using the Planning Domain Definition
Language (PDDL) [4], it will be used here as well. We will therefore now describe a few
small examples of some predicates and operators that will be contained in a similar form
in the MACS planning domain description. We will do this to give an impression of the
representational basis the planner will perform on and to give an idea of what quality and
kind of information processing is needed by the other architectural modules to provide the
necessary world representation. Section 2.2 will then continue with providing an exemplary
problem definition and by explaining the work flow of the planning process.

2.1.2.1 Predicates. The predicates of a domain description are those items that can
be directly evaluated; i.e. one can determine whether they are true or false in the current
situation. Because of this feature, predicates are also referred to as atoms or atomic
formulas. As a simple example assume:

Example 1 Predicates

(define (domain macs-example)
(:requirements :strips :typing)
(:types region room)
(:predicates

(robotAt ?region - region )
(inRoom ?region - region ?room - room)))

This example shows the definition of 2 simple atomic formulas in PDDL syntax. The
first line names the domain we are defining.2 The second line contains the list of require-
ments this specification poses on the corresponding planner. Since PDDL is an abstract
definition language a planner normally has to parse the description file and translate it
into the corresponding planning language. The requirements in this line specify which
extensions of PDDL the planner has to be able to handle to interpret the given domain
description.

The part located between the surrounding brackets of the predicates section is the ac-
tual definition of the predicates. The first predicate robotAt is an atomic formula denoting
that the robot is in a certain region. Hereby, the variable ?region (variables are always
denoted by a ?-prefix) is of type region that is defined in the row above (and denoted by
the ’- type’ suffix). The second predicate is a formula that assigns regions to rooms. In
that way one can easily build a topological map representation e.g. by specifying world
facts like (inRoom region 1 leftRoom) or (inRoom region 2 rightRoom) (see section 2.2.2
for a detailed example).

2Assume all following listings and examples to be placed within this domain definition as well.
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2.1.2.2 Operators. Given this simple definition we can go on by defining operators,
or actions how they are called in PDDL:

Example 2 Approach Operator

(:requirements :strips :typing :equality)
(:action approach-region

:parameters
(?startRegion ?targetRegion - region
?room - room)

:precondition
(and

(robotAt ?startRegion)
(inRoom ?startRegion ?room)
(inRoom ?targetRegion ?room)
(not (?startRegion = ?targetRegion)))

:effect
(and

(robotAt ?targetRegion)
(not (robotAt ?startRegion)))

)

This example extends the defined domain by a first operator for approaching a target
region in the same room. The actual operator consists of the three main parts parameters,
precondition, effect. The list of parameters specifies the actions arguments. The precondi-
tion list contains those atomic formulas that have to hold in the current environment for
the operator to be applicable while the effect list describes the changes of the world model
caused by applying this operator. Note that these are the effects that are the modelled
and expected outcome of the operator. If the robot fails in executing the implementation
of this operator, the effect in the real world will be different to that specified here. It is,
nevertheless, not task of the planning module but of perception and learning to build up
and maintain a world model.

2.1.2.3 Operators and Affordances. As has been stated in the beginning of section
2, operators can also be correlated to affordances, making them a precondition for the
operator. This demands to represent affordances in the domain description as well which
can be achieved by formulating the predicates shown in example 3.

Example 3 Liftability Affordances

(:predicates
(liftable ?region - region))

Here, we have introduced an abstract affordance to the planner. The truth values of
this propositional formula has to be evaluated in the moment the planner is triggered either
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by the user or by a replanning request. For example the world model will contain the fact
(liftable region1 left) if the robot has previously perceived the corresponding affordance
and has entered that impression in its map (see section 2.1.1). Note that only the general
impression of something that somehow affords to be liftable is reflected by this formula
but not the actual triples that hold the information whether blue or red test objects are
in fact liftable. The execution module will then use all the repositories’ entries of actually
perceived liftable affordance representation triples to determine that environmental test
object that affords to be liftable in the current situation. Again, see section 2.2 for a more
detailed explanation.

Example 4 will now make use of these affordance propositions by defining a lift action
that exploits the perception of liftability affordances. The following examples will fur-
thermore show how such affordance propositions can be added or removed from the world
model as the effect of an operator.

Example 4 Lift Operator with Affordance Precondition

(:predicates
(hasLiftedSomething))

(:action lift-liftable
:parameters

(?region - region ?room - room)
:precondition

(and
(robotAt ?region)
(liftable ?region)
(not (hasLiftedSomething)))

:effect
(and

(hasLiftedSomething)
(not (liftable ?region))))

This operator first of all defines an additional predicate (hasLiftedSomething) that
reflects the state of the robot when it has something attached to its crane. As one can
see, the predicates defined in the affordance definition of example 3 are being used in the
precondition list of this operator. The operator will thus only be applicable by the planner,
if the abstract affordance type ”liftable” has been perceived at the robot’s location. The
outcome of the operator tells us that the system has lifted something and removes the
percept of the liftable affordance for that region from the world model. Note that it might
also be meaningful not to remove the liftable affordance percept from the world model as
it surely might be the case that multiple liftable test objects are located in one region.
Nevertheless, not removing this tag by default would result in an inexhaustible source of
liftable objects which would be used by the planner if it wants to reach a goal. Thus, both
options, removing the entry or leaving it in the model, are reasonable. We will stick with
removing the entry for the moment. If, however, during plan execution a further liftability
affordance is perceived in the region after executing the action and deleting liftable ?region
from the world model / map, it will be re-entered directly.
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Before we come to a more embracing example in section 2.2, example 5 will introduce
the complementary operator for a lifting action, that is a drop operator.

Example 5 Drop Operator with Affordance Effect

(:action drop-liftable
:parameters (?region - region ?room - room)
:precondition (and

(robotAt ?region)
(hasLiftedSomething))

:effect (and
(not (hasLiftedSomething))
(liftable ?region)))

The drop-liftable operator reverses the preconditions and effects of the lift-liftable
operator. This follows, that the robot assumes to have the impression of something liftable
in its region after it has dropped something that it has lifted. This allows for actually
generating more complex plans as will be demonstrated in the following section when the
functionality and work flow of this planning approach is described in more detail.

2.2 Functionality

The functionality and the work flow of the planning module can best be described by
means of an example. We will consider a somewhat complex example to show the power
of this approach.

Consider the following situation (for the map refer to figure 1, p. 5): The robot is
standing in region1 left. In region2 left there is a test object that is suitable for triggering
the switch and thus for opening the door. The door itself is closed as there is only
standing a test object of insufficient weight on the switch. A similar test object is located
in region1 right, i.e. in the other room.

As a first planning goal assume that the robot has to put the test objects that are
not suitable for triggering the switch in the left room. One into region1 left and one into
region2 left.

This means that the robot has to move the light test object from the switch to one
of the target regions in the left room, to open the door and to get the light object in the
right room to put it into the other target region.

This more complex setup now demands for a more powerful domain description. We
will need predicates that represent all the relations and facts just mentioned. We further-
more will need a propositional equivalent telling the planner about perceived affordances
and finally we will need a set of operators allowing to trigger the switch, lifting and drop-
ping different kinds of objects as well as for moving around in the environment.

A domain description for this scenario will thus now be provided followed by a problem
definition in section 2.2.2 and the description of the planning process and result in section
2.2.3.
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2.2.1 Domain Description

We will start again with some predicates that represent world facts or states of the robot3

(see predicates listing 1).

Predicates 1 Current State Predicates

(inRoom ?region - region ?room - room)
(robotAt ?robotRegion - region )
(hasLiftedSomething)
(hasSwitchReleaserLifted)

The first three predicates should already be familiar from example 4. But moreover,
we have extended the list of predicates by defining a state predicate that represents the
fact that the robot has lifted something that may be used for triggering the switch.

This directly leads to those predicates that map the robot’s perceived affordances
to planable propositions. To be able to solve the introduced task, we define affordance
predicates representing the affordance percepts of something liftable, something passable,
and moreover some affordances connected to the interaction possibilities of the switch:

Predicates 2 Affordance Proposition Predicates

(non-releaser-liftable ?region - region)
(passable ?startRegion - region ?targetRegion - region)
(switch-releaser-liftable ?region - region)
(switch-triggerable ?region - switchRegion )
(affords-removing-from-switch ?region - switchRegion )

Here we can already see that we distinguish two affordances for liftable objects. There
are two groups of test objects amongst the objects that are perceived as being liftable; the
group of test objects that can be used to trigger the switch and the group of those that
do not have the necessary properties.

It is important to note that we do not at all define what properties are necessary for
categorizing an object to belong to one or the other group. The planner does not care
about this information. It is assumed that the learning module will generate affordance
representation triples based on the observation of the robot’s own actions. If the robot
succeeded in triggering the switch, e.g., with a blue test object one of these affordance
representation triples will contain a blue representation in its cue descriptor. As the
system succeeded in triggering the switch with this object, the affordance triple will have
the type switch-releaser-liftable. This clearly distinguishes this test object, e.g., from
those red objects that can be lifted but do not trigger the switch. The information that
is encoded in the actual triple’s cue descriptor is, however, completely learned and not
predefined. The planner will work only on a representation telling in which region of the
map the abstract switch-releaser-liftable affordance (not a specific triple) has previously
been perceived.

3The full domain and problem specification can be found in the appendix.
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Furthermore, we have introduced predicates that signal the perception of a passable
affordance, coding in this context for the affordance to drive through the open door,
as well as an affordance suggesting to trigger the switch and one suggesting to remove
an object from the switch. The following operators demonstrate how these affordance
propositions are used in the modeling of corresponding operators and show in the following
how the planner can thus exploit its knowledge about affordances and action to generate
”affordance-based” plans.

Besides the approach operator of example 2 (p. 7), we will now introduce a set of
operators that use this knowledge and exploit it for generating appropriate plans.

The operators 1 and 2 define two different lift operators that distinguish themselves
most importantly in the preconditional affordance. While the first operator describes an
action that lifts a test object that affords to be liftable but does not afford to serve as a
switch triggering weight, the second operator describes the action of lifting a test object
affording exactly this triggering process. The important part is, that the Lift-Switch-
Releaser operator defines the additional output of (hasSwitchReleaserLifted) adding this
fact to the world model of the robot. Nevertheless, both operators have the effect of
having lifted something. The planner will exploit this knowledge when it comes to operator
selection.

Operator 1 Lift-Non-Releaser

(:action lift-non-releaser
:parameters (?region - region )
:precondition

(and
(robotAt ?region )
(non-releaser-liftable ?region )
(not (hasLiftedSomething)))

:effect
(and

(hasLiftedSomething)
(not (non-releaser-liftable ?region))))

The two complementary operators that drop the lifted objects are specified in operator
3 and 4. These two operators turn around the precondition and effect clauses of the lift
operators. Note that this results in having the affordance that triggered the lift operator
in the effect list of the drop operators.

These first four operators allow the robot to lift and to drop liftable test objects and
to distinguish whether these objects have been perceived to afford triggering the switch
or not. If the robot no has lifted a test object that affords this action, i.e. if the world
model contains (hasSwitchReleaserLifted), the robot may trigger the switch if it perceives
the switch-triggerable affordance (see operator 5).

The trigger-switch operator describes the preconditions and effects of putting a switch-
releaser test object on the switch. The effect contains that the passage between the
two door regions of the map will be passable in both directions. The switch will not
be triggerable any more but the object-on-switch setup will yield the impression that
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Operator 2 Lift-Switch-Releaser

(:action lift-switch-releaser
:parameters (?region - region ?room - room)
:precondition

(and
(robotAt ?region)
(switch-releaser-liftable ?region)
(not (hasLiftedSomething)))

:effect
(and

(hasSwitchReleaserLifted)
(hasLiftedSomething)
(not (switch-releaser-liftable ?region))))

Operator 3 Drop-Non-Releaser

(:action drop-non-releaser
:parameters (?region - region)
:precondition

(and
(robotAt ?region)
(hasLiftedSomething)
(not (hasSwitchReleaserLifted)))

:effect
(and

(not (hasLiftedSomething))
(non-releaser-liftable ?region)))

Operator 4 Drop-Switch-Releaser

(:action drop-switch-releaser
:parameters (?region - region)
:precondition

(and
(robotAt ?region)
(hasSwitchReleaserLifted))

:effect (and
(not (hasSwitchReleaserLifted))
(not (hasLiftedSomething))
(switch-releaser-liftable ?region)))
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Operator 5 Trigger-Switch

(:action trigger-switch
:parameters

(?doorRegion ?otherDoorRegion - doorRegion
?switchRegion - switchRegion)

:precondition
(and

(robotAt ?switchRegion)
(hasSwitchReleaserLifted)
(switch-triggerable ?switchRegion)
(not (= ?doorRegion ?otherDoorRegion)))

:effect
(and

(passable ?doorRegion ?otherDoorRegion )
(passable ?otherDoorRegion ?doorRegion )
(not (switch-triggerable ?switchRegion))
(affords-removing-from-switch ?switchRegion)
(not (hasSwitchReleaserLifted))
(not (hasLiftedSomething))))

something can be removed from the switch (see operator 6). Note that the case of putting
a non-releaser object on the switch is skipped here for reasons of brevity. See appendix A
for the complete list of operators.

Nevertheless, by defining the remove-releaser-from-switch and remove-non-releaser-
from-switch operators, the planner will be able to exploit the affordance of something that
affords removing (operators 6 and 7). In the case of these two operators, the planner can
choose the correct one based on the perception of a passable affordance. If the passage
is available, the item on the switch must have triggered the switch. If the affordance of
something passable cannot be perceived, the item did not have the characteristics of a
switch-releaser and thus does not result in the (hasSwitchReleaserLifted) effect.

The last operator that needs to be defined to complete this fairly complex domain
representation is the operator that allows the robot or the planner respectively to change
from one room to another (see operator 8). This operator exploits the aforementioned
passable affordance to move from one door region to the other.

2.2.2 Problem Definition

Given the domain description of the last section we need to specify a problem definition
that contains the current state of the environment and furthermore a goal. The planner
tries to achieve this goal by constructing an operator sequence that will lead to the desired
goal if implemented as foreseen by the execution control. The problem definition that
describes the setup described at the beginning of section 2.2 is given in the problem
definition listing 1.
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Operator 6 Remove-Releaser-From-Switch

(:action remove-releaser-from-switch
:parameters

(?doorRegion ?otherDoorRegion - doorRegion
?switchRegion - switchRegion)

:precondition
(and

(robotAt ?switchRegion)
(not (= ?doorRegion ?otherDoorRegion))
(not (hasLiftedSomething))
(affords-removing-from-switch ?switchRegion)
(passable ?doorRegion ?otherDoorRegion)
(passable ?otherDoorRegion ?doorRegion))

:effect
(and

(not (passable ?doorRegion ?otherDoorRegion))
(not (passable ?otherDoorRegion ?doorRegion))
(switch-triggerable ?switchRegion)
(not (affords-removing-from-switch ?switchRegion))
(hasSwitchReleaserLifted)
(hasLiftedSomething)))

Operator 7 Remove-Non-Releaser-From-Switch

(:action remove-non-releaser-from-switch
:parameters

(?doorRegion ?otherDoorRegion - doorRegion
?switchRegion - switchRegion)

:precondition
(and

(robotAt ?switchRegion)
(not (hasLiftedSomething))
(not (= ?doorRegion ?otherDoorRegion))
(affords-removing-from-switch ?switchRegion)
(not (passable ?doorRegion ?otherDoorRegion))
(not (passable ?otherDoorRegion ?doorRegion)))

:effect
(and

(switch-triggerable ?switchRegion)
(not (affords-removing-from-switch ?switchRegion))
(hasLiftedSomething)))
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Operator 8 Change-Room

(:action change-room
:parameters

(?doorRegion - doorRegion
?targetDoorRegion - doorRegion)

:precondition
(and

(robotAt ?doorRegion)
(not (= ?doorRegion ?targetDoorRegion))
(passable ?doorRegion ?targetDoorRegion))

:effect
(and

(not (robotAt ?doorRegion))
(robotAt ?targetDoorRegion)))

Problem Definition 1 Problem Definition

(define (problem macs-prob)
(:domain macs-example)
(:objects

region1 left region2 left region1 right - region
switchRegion - switchRegion
doorRegionLeft doorRegionRight - doorRegion
rightRoom - room
leftRoom - switchRoom)

(:init
(robotAt region1 left)
(inRoom region1 left leftRoom)
(inRoom region2 left leftRoom)
(inRoom switchRegion leftRoom)
(inRoom doorRegionLeft leftRoom)
(inRoom region1 right rightRoom)
(inRoom doorRegionRight rightRoom)

(switch-releaser-liftable region2 left)
(non-releaser-liftable region1 right)
(affords-removing-from-switch switchRegion))

(:goal
(and (non-releaser-liftable region1 left)

(non-releaser-liftable switchRegion)
(switch-triggerable switchRegion)
(not (hasLiftedSomething)))))
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The problem definition contains first a link to the domain definition that defines the
different predicates used here. The objects parentheses include all different objects that
the planner can work with. Remember that we leave the task of grounding the operators
in the environment to the execution control that is meant to exploit the learned affordance
representation triples. That is why the object list in this representation only encodes the
map and its rooms and regions as it was introduced in section 2.1.1.

The init parentheses surround the initial state of the system that is meant to reflect the
environment in the moment in which the planner is triggered. The first block reflects the
static environment while the second block reflects those propositions that emerge from the
current knowledge of the world. In this case, it is assumed that the robot has perceived the
affordance of switch-releaser-liftable in region2 left, non-releaser-liftable in region1 right,
and furthermore that in the switch region the action of removing something from the
switch is perceived as being afforded. This initial state reflects the given description of
the scenario (see the beginning of section 2.2.

The last block describes in the goals of the system that demands for the robot to get
the impression of something liftable that does, however, not afford to be lifted in two
different regions of the left room. Furthermore the switch shall be perceived as affording
to be triggered and the robot shall not hold anything.

2.2.3 Planning Process

Based on the PDDL domain definition and problem description, we can use an off-the-shelf
planning system for delivering a valid plan. In this case, we use the Fast Forward (FF)
planner of Jörg Hoffmann [3]4. Listing 1 shows the plan as it was generated by the FF
planner.

This plan is a sequence of operators that transform the initial situation description into
another one in which the goals are true (i.e., contained). The plan contains all necessary
steps to open the door and to bring about the desired affordance percepts within the
specified target regions. If the robot succeeds in executing the different steps of the plan,
the resulting state of the world will correspond to the world model as specified in the goal
description of the planning problem. If, however, the execution of one of these operators
fails, the planner has to be triggered again, with an updated world model in order to
deliver a new plan corresponding to the current and changed situation.

4This GPL planner can be obtained at http://members.deri.at/~joergh/ff.html.
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Plan 1 FF Generated Plan

0: APPROACH-REGION region1 left switchregion leftroom
1: REMOVE-NON-RELEASER-FROM-SWITCH

doorregionright doorregionleft switchregion
2: APPROACH-REGION switchregion region1 left leftroom
3: DROP-NON-RELEASER region1 left
4: APPROACH-REGION region1 left region2 left leftroom
5: LIFT-SWITCH-RELEASER region2 left leftroom
6: APPROACH-REGION region2 left switchregion leftroom
7: TRIGGER-SWITCH doorregionright doorregionleft switchregion
8: APPROACH-REGION switchregion doorregionleft leftroom
9: CHANGE-ROOM doorregionleft doorregionright
10: APPROACH-REGION doorregionright region1 right rightroom
11: LIFT-NON-RELEASER region1 right
12: APPROACH-REGION region1 right doorregionright rightroom
13: CHANGE-ROOM doorregionright doorregionleft
14: APPROACH-REGION doorregionleft switchregion leftroom
15: DROP-NON-RELEASER switchregion
16: REMOVE-RELEASER-FROM-SWITCH

doorregionright doorregionleft switchregion
17: DROP-SWITCH-RELEASER switchregion

3 Cue – Outcome based planning

The second approach towards an affordance-based or -inspired planning module aims at
incorporating the actual affordance representation triples, and not only their abstract
types, more deeply into the planning process. The main idea can shortly be described as
planning on the cue and outcome descriptors of the triples. More precisely, it is assumed
that the robot has learned, in form of the affordance representation triples, which cues
are necessary for an action to be applicable (or to be afforded) and what are the results
of applying that action in the corresponding situation.

If the outcome and cue descriptions can now be mapped onto each other in a way
that they can be unified, the system may be able to sequentialize different affordance
representation triples, that hold the information for an action’s execution, into a plan.
This plan thus contains the information of how to transform an initial situation in a goal-
directed manner into a different situation that contains the user-specified goals as part of
the last triple’s outcome descriptor.

In other words: If the robot has learned, that a red blob cue triggers the affordance
liftable, and it knows that such a red blob can be perceived if the open-door affordance is
being used and implemented, a plan can be generated that tells the system to act upon
the open-door affordance representation triple and afterwards on the red blob liftable
triple. At this moment, it is, nevertheless still not fully specified how the actual planning
process can work on this representation. The cue and outcome descriptors of the affordance
representation triples have to serve as the precondition and effect part of a formal operator
description to give a planning system a representation to work on. What is clear up to now
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is that the cue and outcome descriptors of the affordance representation triples somehow
have to be unifiable. It has to be possible to map the representation of an action’s outcome
to the cues that can trigger another affordance. This and other remaining open questions
will be addressed in section 4.3.
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4 Comparison of the two approaches

Both approaches introduced in the last two chapters have their benefits and drawbacks.
This chapter provides a brief overview of their different characteristics.

4.1 Benefits and drawbacks of the fully specified approach

+ There exist virtually no requirements on the actual structure of an affordance repre-
sentation triple’s cue and outcome descriptors. The planner does not need to evaluate
the information encoded within the specific triples as it only plans using abstract
affordance types. The different descriptors can therefore hold all the information
the learning module or the execution control and its Event and Execution Monitor
can handle. This explicitly allows for storing more complex time series of temporal
changes within the descriptors, e.g. in the form of complex MITL formulas.

+ Symbol, or operator, grounding is an important research question and can still be
regarded as being unsolved today. Using learned affordance representation triples to
implement or ground the operators delivered by the planner on environmental test
objects that afford the corresponding action yields a most interesting and valuable
contribution to this field of research.

- The system uses explicitly predefined world knowledge that encodes information
about the possible exploits of affordances and the connections of affordances to
actions and their complements. Such an approach is, firstly, hard to extend, for
instance, if new actions should be learned as this would need newly defined opera-
tors. Secondly, when using a world representation and domain description developed
purely based on expert knowledge, the system will lack an important part of auton-
omy and does not fully exploit the power of current learning approaches.

4.2 Benefits and drawbacks of cue and outcome based planning

+ The approach minimizes the need of predefined operators and thus the usage of
expert knowledge. Most relations and the characteristics of affordances are learned
and the learned knowledge is explicitly used for planning. The system thus becomes
highly flexible and scalable. For instance, the learning of new actions is theoretically
easy as each affordance representation triple can already be regarded as encoding its
own, meaningful action.

- The approach has high demands on the representation of the cue and outcome de-
scriptors. First of all, they have to be unifiable to be able to generate plans by deriv-
ing world facts that are, on the one hand, the outcome of an action and affordance
representation triple respectively, and that lead, on the other hand, to perceiving
the cue of another triple for being able to build a sequential plan of triples. Sec-
ondly, the descriptors have to encode their information on a symbolic level as, e.g.,
complex time series of value development cannot easily be mapped onto each other.
Especially since temporal planning systems cannot be integrated into the project in
the short remaining period of time and it is not yet clear if or how, for instance, an
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EEM capable MITL representation of a cue can be translated into a valid symbol
usable by a propositional planner.

- The planning procedure and execution becomes much harder. While the first ap-
proach works on a cleanly defined domain description, this approach aims at planning
mostly on learned data. The search space will presumably be significantly larger than
in the other approach. Plan execution is more likely to fail as a plan would con-
tain only one affordance representation triple for fulfilling a step instead of all those
triples that belong to the corresponding abstract affordance category. Due to this
circumstance, plans will as well be less flexible and failing to detect the cues of a
planned triple will eventually result in a failed plan execution and thus in the need
for subsequent replanning.

∼ It is not yet clear how to include facts like the need of driving to a target location
before following the affordance of dropping something can be encoded within the
plans and the whole approach. Modeling movement as affordance representation
triples is certainly not a good idea.

4.3 Open Questions

General questions:

• Who can build and maintain a map of the robot’s environment and how should this
procedure work exactly?

Second approach:

• How can cues and outcomes be represented to serve both as input to the EEM and
the planner as well?

• How can a valid mapping between cues and outcomes be achieved?

• How can we account for space differences within plans of affordance representation
triples?

• Can, and if yes how can, a map representation be integrated in the second approach?

4.4 Conclusion

Both approaches presented above have strong benefits and are suitable for approaching
into the direction of fulfilling the MACS goal of evaluating the possible applicability and
usefulness of affordance theory to robotics.

At first sight, the second approach seems to be more powerful since it is definitely
more scalable works completely on learned data while it does not at all depend on expert
knowledge. The first approach, nevertheless, shows benefits in exploiting the flexibility
of affordances by leaving the grounding of operators or actions completely to the learned
interaction possibilities offered by the environment tackling in fact one of the main points
of affordance theory.

As the cue and affordance based planning approach poses more requirements to the
architectural integration and especially to the affordance representation triples’ explicit

20



content (which is not yet defined) it is more feasible to start with the other approach
that is less demanding in this regard. Chapter 2 already gives a usable domain defini-
tion and demonstrates the approach’s applicability with a standard planner yielding a
correctly developed and executable plan. Due to these considerations work has started
to define interfaces with the Execution Module and we decided to start off with the do-
main description based planning approach for achieving a first demonstratable prototype
system.

During the development of this system the content of the affordance representation
triples’ descriptors will be defined in more detail and work can start towards defining and
implementing the second approach of cue - outcome based planning as well.
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5 Interface to the Execution Control Module

This section describes the interface between the Planning Module (PM) and the Execution
Module (EM).5As a general note clarifying the communication between these modules we
have decided to use the PM solely for delivering plans that are sequences of operators. The
EM will contain a scheduling component implementing each plan operator step-by-step
by using its Event and Execution Monitor as well as the Behavior Module (BM).

Though the interface between PM and EM will be held in a way abstract enough
to support partially ordered plans, we will begin with totally ordered plans in the first
demonstration setups.

Generally, it is important to keep in mind that there exists a mapping from operators
to behaviors but that they are not at all in a 1:1 relation. The next section will thus give
a detailed list of what behaviors the EM will use to execute the operators before section
5.2 will eventually give the interface definition between PM and EM.

5.1 List of Operators and their EM counterparts

The following table will provide the (not yet complete) list of operators specified for the
domain description based planning approach as well as their Behavior Module counterparts
which shall be instantiated by the EM in order to implement the operators. Remember
that the test objects that will be used to ground them will be selected by the EM as well
by using the EEM.

Operator BM Counterpart Remark

approach-region Approach

lift-non-releaser Lift

lift-switch-releaser Lift

drop-non-releaser Drop

drop-switch-releaser Drop

trigger-switch Stack

remove-releaser-from-switch Unstack

remove-non-releaser-from-switch Unstack

change-room DriveThrough

carry Approach monitor lifted weight

carry-through DriveThrough monitor lifted weight

. . .

(Note that the operators needed for the stacking demonstrator scenario are not yet speci-
fied.)

The carry and carry-through operators are special as they signal a special constraint
to the EM to monitor during their execution. The EM has to monitor that the weight
attached to the crane does not vanish during the execution of the action. If it does, the
EM can detect the failure and react appropriately.6

5Note that this interface definition is not yet fully specified and is thus subject to change.
6Note that these two operators were, for reasons of simplicitly, not included in the examples presented

in section 2.
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5.2 Interface definition

The interface of the Planning Module is defined as follows:

interface IPlanningModule {

typedef sequence<ART> AffordanceTripleVector;

typedef sequence<string> ParameterVector;

struct StrOperator {

string name;

AffordanceTripleVector affordanceTriples;

ParameterVector parameters;

}

typedef sequence<StrOperator> Plan;

typedef sequence<string> Goal;

plan(in Goal goal, out Plan plan);

replan(out Plan plan);

}

Hereby, ART is a placeholder for the affordance representation triple structure that is not
yet defined as it depends on the Learning Module. An operator consists of an identifying
name, a sequence of these ARTs and a sequence of parameters as well. The AffordanceTrip-
pleVector will, in the case of the domain description based planning approach (section 2),
contain all those learned affordance representation triples that belong to the type of affor-
dance associated with the operator; e.g., blue blob is cue for liftability, red blob is cue for
liftability.

However, not all operators need an ART to be applicable and executable by the EM.
For instance approach-region and carry do not need an affordance. These operators will
simply have an empty AffordanceTripleVector but instead specify necessary parameters
by filling the ParameterVector. An example would be the identifying name of the region
that the robot is meant to approach.

Of course, the Planning Module interface defines plans and the necessary planning
functions as well. A plan (in this case still totally ordered, partially will probably follow)
is a sequence of planning operators. A plan is achieved by calling the plan() function that
requires an input in form of a goal description and delivers as output an according plan.
If the planner cannot find a valid plan to reach the goal, the resulting plan will be empty.

The replan() function uses the same goal that was given to the plan() function before-
hand but tries to deliver a new plan based on the updated world state.

The EM will provide the following interface to execute plans or to stop the execution.

interface IExecutionModule {

executePlan(in Plan plan);

stopExecution();

}
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While the PM’s replanning process will probably mainly be triggered from the Execu-
tion Module, the EM’s execution and stopExecution as well as the PM’s initial planning
function will mainly be called from the user interface.
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A domain.pddl

; ; Domain MACS Example
; ; PDDL d e f i n i t i o n o f the MACS domain and the opera tor s needed
; ; f o r changing rooms and opening the door by t r i g g e r i n g the
; ; sw i t ch with appropr ia t e t e s t o b j e c t s .
; ; Assumption i s t ha t the opera tor s are f u l l y s p e c i f i e d and t ha t
; ; a map r ep r e s en t a t i on ho lds the a b s t r a c t a f fordance t ypes
; ; r epre sen t ed in reg ions .

( define (domain macs−example )

( :requirements : s tr ips :typing :equality )

( :types doorRegion switchRegion − r eg i on
switchRoom − room )

; ########### Pred ica t e s ################
( :predicates

; AFFORDANCE PROPOSITIONS:
; a f fordance p ropo s i t i on s ge t an as s i gend t r u t h va lu e
; determined from the snapshot o f the world in the moment
; in which the p lanner i s t r i g g e r e d .
; They are as w e l l encoded in the e f f e c t par t o f an operator
; t ha t r e s u l t s in t h i s a f fordance to be a v a i l a b l e .
; E. g . :
; − drop ac t ion f o l l ow s l i f t a b l e , or
; − t r i g g e r sw i t ch f o l l ow s pa s s ab l e .

( non− r e l e a s e r− l i f t ab l e ? reg ion − r eg i on )
( sw i t ch− r e l e a s e r− l i f t a b l e ? reg ion − r eg i on )

; open passage from one room to another .
; Imp l i e s knowledge o f a map , and knowledge o f the e f f e c t o f
; opening doors , e t c .
( pa s sab l e

? s t ar tReg ion − r eg i on
? targe tReg ion − r eg i on )

; t ru e i f the sw i t ch i s empty so one can p lace something on i t
( sw i t ch− t r i g g e r ab l e ? reg ion − switchRegion )
; t ru e i f something can be removed from the sw i t ch
( affords−removing−from−switch ? reg ion − switchRegion )

; NORMAL PREDICATES:

; The robo t i s in a c e r t a in reg ion o f a c e r t a in room .
; Note t ha t we do not have to encode e x p l i c i t e n t i t i e s as we
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; on ly cons ider a b s t r a c t a f fordances t ha t have been perce i ved
; in the corresponding reg ions .
( robotAt ? robotRegion − r eg i on )
; t ru e i f a reg ion i s in a room
( inRoom ? reg ion − r eg i on ?room − room )
; t ru e i f the robo t has l i f t e d something
( hasLi ftedSomething )
; t ru e i f robo t has l i f t e d an o b j e c t t ha t a f f o r d s
; r e l e a s i n g the sw i t ch
( ha sSwi tchRe l ea s e rL i f t ed )

) ; ; End pr ed i c a t e s

; ########### Actions ################

( : action approach−region

:parameters (? s t ar tReg ion − r eg i on
? targe tReg ion − r eg i on
?room − room)

:precondition
(and

( robotAt ? s t ar tReg ion )
; make sure s t a r t and t a r g e t reg ion are in the same room
( inRoom ? s t ar tReg ion ?room )
( inRoom ? targe tReg ion ?room )
(not (= ? s t ar tReg ion ? targe tReg ion ) ) )

: e f f e c t
(and

( robotAt ? targe tReg ion )
(not ( robotAt ? s t ar tReg ion ) ) ) )

( : action lift−non−releaser

:parameters (? reg ion − r eg i on )
:precondition

(and
( robotAt ? reg ion )
; l i f t a b l e perce i ved in t ha t reg ion ?
( non− r e l e a s e r− l i f t ab l e ? reg ion )
(not ( hasLi ftedSomething ) ) )

: e f f e c t
(and

( hasLi ftedSomething )
(not ( non− r e l e a s e r− l i f t ab l e ? reg ion ) ) ) )

( : action lift−switch−releaser

:parameters (? reg ion − r eg i on ?room − room )
:precondition

(and
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( robotAt ? reg ion )
( sw i t ch− r e l e a s e r− l i f t a b l e ? reg ion )
(not ( hasLi ftedSomething ) ) )

: e f f e c t
(and

( ha sSwi tchRe l ea s e rL i f t ed )
( hasLi ftedSomething )
; negate the sw i t c h− r e l e a s e r− l i f t a b l e a f fordance f o r t h i s
; l o c a t i on . I f we would not do t h i s , the
; p lanner would have an i n e x h au s t i b l e source
; o f r e l e a s e r l i f t a b l e t e s t o b j e c t s here .
(not ( sw i t ch− r e l e a s e r− l i f t a b l e ? reg ion ) ) ) )

( : action drop−non−releaser

:parameters (? reg ion − r eg i on )
:precondition

(and
( robotAt ? reg ion )
( hasLi ftedSomething )
; t he sw i t ch r e l e a s e r has an own drop operator
(not ( ha sSwi tchRe l ea s e rL i f t ed ) ) )

: e f f e c t
(and

(not ( hasLi ftedSomething ) )
( non− r e l e a s e r− l i f t ab l e ? reg ion ) ) )

( : action drop−switch−releaser

:parameters (? reg ion − r eg i on )
:precondition

(and
( robotAt ? reg ion )
( ha sSwi tchRe l ea s e rL i f t ed ) )

: e f f e c t
(and

(not ( ha sSwi tchRe l ea s e rL i f t ed ) )
(not ( hasLi ftedSomething ) )
; sw i t ch− r e l easer l i f t a b l e a f fordance w i l l be p e r c e i v a b l e
; in t h i s reg ion a f t e r dropping .
( sw i t ch− r e l e a s e r− l i f t a b l e ? reg ion ) ) )

( : action trigger−switch

:parameters (?doorRegion ?otherDoorRegion − doorRegion
? switchRegion − switchRegion )

:precondition
(and

( robotAt ? switchRegion )
( ha sSwi tchRe l ea s e rL i f t ed )
; Does the sw i t ch a f f o r d to be t r i g g e r e d
; ( i . e . : i s i t empty ?)
( sw i t ch− t r i g g e r ab l e ? switchRegion )
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(not (= ?doorRegion ?otherDoorRegion ) ) )
: e f f e c t

(and
; r e s u l t i s a f fo rdance percep t ion o f something pa s s ab l e
( pa s sab l e ?doorRegion ?otherDoorRegion )
( pa s sab l e ?otherDoorRegion ?doorRegion )
; t he sw i t ch w i l l not a f f o r d to be t r i g g e r e d again
(not ( sw i t ch− t r i g g e r ab l e ? switchRegion ) )
; i t w i l l a f f o r d to remove something from i t
( affords−removing−from−switch ? switchRegion )
(not ( ha sSwi tchRe l ea s e rL i f t ed ) )
(not ( hasLi ftedSomething ) ) ) )

( : action remove−releaser−from−switch

:parameters (?doorRegion ?otherDoorRegion − doorRegion
? switchRegion − switchRegion )

:precondition
(and

( robotAt ? switchRegion )
(not (= ?doorRegion ?otherDoorRegion ) )
(not ( hasLi ftedSomething ) )
( affords−removing−from−switch ? switchRegion )
; remove heavy imp l i e s t ha t the passage can be perce i ved .
( pa s sab l e ?doorRegion ?otherDoorRegion )
( pa s sab l e ?otherDoorRegion ?doorRegion ) )

: e f f e c t
(and

; r e s u l t i s door == c l o s ed == not pa s s ab l e
(not ( pa s sab l e ?doorRegion ?otherDoorRegion ) )
(not ( pa s sab l e ?otherDoorRegion ?doorRegion ) )
; t he sw i t ch w i l l a f f o r d to be t r i g g e r e d
( sw i t ch− t r i g g e r ab l e ? switchRegion )
; i t w i l l not a f f o r d to remove something from i t anymore
(not ( affords−removing−from−switch ? switchRegion ) )
; t he door was open −−> we have removed something heavy
( ha sSwi tchRe l ea s e rL i f t ed )
( hasLi ftedSomething ) ) )

( : action remove−non−releaser−from−switch

:parameters (?doorRegion ?otherDoorRegion − doorRegion
? switchRegion − switchRegion )

:precondition
(and

( robotAt ? switchRegion )
(not ( hasLi ftedSomething ) )
(not (= ?doorRegion ?otherDoorRegion ) )
( affords−removing−from−switch ? switchRegion )
; non−re leaser imp l i e s t ha t passage cannot be perce i ved
(not ( pa s sab l e ?doorRegion ?otherDoorRegion ) )
(not ( pa s sab l e ?otherDoorRegion ?doorRegion ) ) )

: e f f e c t
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(and
; t he sw i t ch w i l l a f f o r d to be t r i g g e r e d
( sw i t ch− t r i g g e r ab l e ? switchRegion )
; i t w i l l not a f f o r d to remove something from i t anymore
(not ( affords−removing−from−switch ? switchRegion ) )
; Door was not open , item was no r e l e a s e r
( hasLi ftedSomething ) ) )

( : action change−room

:parameters (?doorRegion − doorRegion
? targetDoorRegion − doorRegion )

:precondition
(and

( robotAt ?doorRegion )
(not (= ?doorRegion ? targetDoorRegion ) )
( pa s sab l e ?doorRegion ? targetDoorRegion ) )

: e f f e c t
(and

(not ( robotAt ?doorRegion ) )
( robotAt ? targetDoorRegion ) ) ) )
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B problem.pddl

( define (problem macs−prob)

( :domain macs−example )

( :objects
r e g i o n 1 l e f t r e g i o n 2 l e f t r e g i o n 1 r i g h t − r eg i on
switchRegion − switchRegion
doorRegionLeft doorRegionRight − doorRegion
rightRoom − room
leftRoom − switchRoom )

( : i n i t
( robotAt r e g i o n 1 l e f t )
( inRoom r e g i o n 1 l e f t leftRoom )
( inRoom r e g i o n 2 l e f t leftRoom )
( inRoom switchRegion leftRoom )
( inRoom doorRegionLeft leftRoom )
( inRoom r e g i o n 1 r i g h t rightRoom )
( inRoom doorRegionRight rightRoom )

( sw i t ch− r e l e a s e r− l i f t a b l e r e g i o n 2 l e f t )
( non− r e l e a s e r− l i f t a b l e r e g i o n 1 r i g h t )
( affords−removing−from−switch switchRegion ) )

( :goal
(and ( non− r e l e a s e r− l i f t ab l e r e g i o n 1 l e f t )

( non− r e l e a s e r− l i f t ab l e switchRegion )
( sw i t ch− t r i g g e r ab l e switchRegion )
(not ( hasLi ftedSomething ) ) ) ) )
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